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1. Introduction

Decades have passed since quantum chromodynamics was accepted as the theory of strong

interaction. While the successes of this theory are impressive, there still remain numerous

unresolved problems. The most prominent of those problems is the confinement. At low

energy, we observe hadrons instead of the QCD fundamental degrees of freedom and we still

do not quite understand the mechanism of this phenomenon. The lack of the understanding

is mainly due to the strongly coupled nature of the theory at low energy and to the fact

that we do not have very good analytical control over the field theory in such coupling

regime. The best hope, therefore, is that the numerical study could provide important

insights into QCD at strong coupling.

Confinement is one of the phases of QCD and there are other phases in different

regions of the QCD parameter space. One such example is the deconfined phase at high

temperature. The numerical method, in fact, is proven to be powerful in the investigation

of the confinement/deconfinement phase transition, and has provided the estimates of the

transition temperature and the order of the phase transition. (See reference [1] and the

papers cited therein.) There is, however, a large region of the parameter space in which

even the numerical study has not been very successful. Namely, the theory at finite quark

(baryon) density. There is a problem in carrying out lattice simulations with the nonzero

chemical potentials that are conjugate to the density and this is known as the sign problem

(see e.g. Reference [2]). While the effort to overcome the sign problem vigorously continues,
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there have been some developments in analytic approaches. These include the analysis at

asymptotically large chemical potential and also the use of NJL type models. The former

takes the advantage that the QCD coupling is expected to be weak at very high density and

perturbative computations from the QCD Lagrangian itself are possible. The latter models

are pure fermionic and quartic couplings, which reproduce properties of QCD interactions

in a certain degree, are introduced.1

What has been emerging from these analyses is the very rich phase structure of QCD

in the parameter space of the temperature and the chemical potential. (See, for example,

reference [8] for the phase diagram.) In general, a cold and highly dense quark matter

is expected to become a color superconductor [9]. As mentioned before, when the quark

chemical potential µ is very large, the coupling g(µ) is small and the excitations near the

Fermi surface of the quarks, particles and holes, are nearly free, and this naive ground

state at high density is known as the Fermi liquid. However, the pairs of the particles at

the antipodal points of the Fermi sphere are all degenerate and it costs no free energy to

form such a pair. Then, if there is an attractive force between the particles (or holes),

the pairing actually reduces the free energy of the system, leading to the instability of the

naive ground state against the formation of the pair (Cooper pair). This is known as the

Bardeen-Cooper-Schrieffer (BCS) instability [10] and in their original work for the electron

gas in a solid, the attractive force was provided by the phonon exchange. For the case of

high density QCD, there is an attractive force in a color channel and it leads to the similar

BCS instability.

In particular, if we have three massless flavors in the theory, a very interesting form

of the condensate has been found to form [11].2 This is the (scalar) diquark condensate of

the form

〈qa
Liq

b
Lj〉 = −〈qa

Riq
b
Rj〉 = ∆CFL(δa

i δ
b
j − δa

j δ
b
i ) , (1.1)

where the superscripts a, b are the color indices, the subscripts i, j are for the flavors, the

subscripts L,R indicates the chirality of the quarks and ∆CFL is the size of the condensate

(the gap). As one can see, the Kronecker deltas relate the flavor and color symmetries

and those are not separately preserved by the condensate. The residual symmetry is the

simultaneous flavor and (global) color rotations and for this reason, this phenomenon is

called the color-flavor locking (CFL). The full symmetry breaking pattern of CFL is

SU(3)color × SU(3)L × SU(3)R ×U(1)V × U(1)EM → SU(3)color+L+R × Z2 ×U(1)Q̃ , (1.2)

where SU(3)color+L+R is the global diagonal subgroup of the original color and flavor sym-

metries, Z2 is the subgroup of U(1)V that changes the sign of all the quarks and U(1)Q̃ is

known as the “modified electromagnetism” whose gauge boson is a linear combination of

1A good modern review on perturbative high density QCD is reference [1]. The NJL-model was intro-

duced by Nambu and Jona-Lasinio [3, 4] as the model that exhibits the chiral symmetry breaking and light

hadronic spectrum. A good review on the NJL model is reference [5]. The model is applied to QCD at

finite density and reviewed in references [6, 7].
2This model with Nf = 3 massless quarks is an approximate QCD where the masses of u, d, s are set to

zero and those of c, b, t are taken to infinity.
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the original photon and one of the gluons [11, 1]. We observe that since L- and R-flavor

symmetries both lock to the color, the chiral symmetry is broken through the color factor.

Even though the mechanism of the chiral symmetry breaking is very unusual, the corre-

sponding chiral Lagrangian can be built [12]. This novel phase of QCD created a renewed

and wide interest in the QCD phase structure and many generalizations and modifications

have been explored. For example, when one considers finite quark masses, there are other

possible forms of the condensate and those can be energetically favored for some regions

of the µ-T parameter space, resulting in the complicated structure of the phase diagram.

The interested reader can pursuit the subject in the review papers cited above.

Rather than continuing to overview the QCD phase structure, we would now like to

turn to the high density behavior in the ’t Hooft limit with weak coupling. (This is not

QCD, which has Nc = 3, but has a potential relation to the holographic theories.) In

this case, we do not expect the color superconductor to be the correct ground state of

the cold QCD. Heuristically, this is because the Cooper pair is not a color singlet and not

expected to survive the limit. The possibility of a color singlet condensate of particle and

hole (not anti-particle) has been investigated by Deryagin, Grigoriev and Rubakov (DGR)

in Reference [13]. When the particle and hole at the antipodal points of the Fermi sphere

form a pair, the condensate is not homogeneous nor isotropic but is a standing wave in a

certain direction;

〈q̄L(x)qR(y)〉 = ei~pF ·(~x+~y)f(x− y) , (1.3)

where |~pF | = µ and f is a function that describes the amplitude of the standing wave.

The condensate is called the chiral density wave (χDW) and it breaks the chiral symmetry

but not the gauge symmetry (in the limit x → y). This condensate is kinematically less

favored than the Cooper pairing at Nc ≈ 3, but it has been shown that the ground state

instability due to the formation of χDW (DGR instability) dominates over the BCS-type

instability in the large Nc limit [13, 14].

The aim of this paper is to examine the high density behavior of the Sakai-Sugimoto

model [15, 16]. As we will describe in section 2, this is a model in Type IIA string theory

with a certain brane configuration. What makes this model interesting is that the low

energy spectrum is similar to that of QCD, especially, there are fundamental quarks with

the left- and right-chiral symmetries. In the strong coupling gravity background analysis,

Sakai and Sugimoto have shown that the chiral symmetry is broken and they were able

to compute the hadron spectrum of the theory. Moreover, they have constructed the low

energy effective action of the theory with the Skyrme term whose soliton excitations can be

considered as baryons. Those promising successes make this model an interesting candidate

for holographic QCD. Therefore, we are naturally motivated to examine the model at high

density and ultimately, we hope the model to give insight into the structure of the QCD

phase diagram in all values of the parameters, especially in the medium density region

where the theory is strongly coupled.

Though we do not get this far in this work, we show in section 2 that the weak coupling

regime of the theory at high density and zero temperature behaves very similar to QCD

with a few differences. One of the differences is that when the chemical potential is very
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large with respect to the compactification size of the model, the BCS and DGR instabilities

at Nc ≈ 3 and Nc → ∞, respectively, are absent and the ground state is the Fermi liquid. In

section 3, we comment on the known finite density analysis of the model at strong coupling,

contrasting to the QCD expectations. In the strong coupling analysis, the possibilities of

the superconductivity and χDW have not been addressed and we discuss some prospects

in this direction.

2. Weak coupling field theory analysis

In this section, we discuss the Sakai-Sugimoto brane system at high density with the

weak Yang-Mills coupling of the world-volume theory. Though the results are relatively

straightforward, the computations are somewhat involved. We therefore split the discussion

into the qualitative and quantitative parts. In the first part, we qualitatively explain the

high density behavior of the system, then in the second part, we carry out the computations

and confirm the qualitative expectations.

2.1 Qualitative discussion

2.1.1 BCS and DGR instabilities

Let us briefly review the BCS and DGR instabilities of high density QCD in a way that

would provide the conceptual background for the quantitative calculations.3 For simplicity,

we set all current quark masses to zero, which is a good approximation when the quark

chemical potential is much larger than the mass of the heaviest quark. In the presence of

the quark chemical potential, µ, at zero temperature, we have a well-defined Fermi sphere

of radius µ. As a convention, we take the excitations near the Fermi surface be particles as

opposed to anti-particles. When µ is very large, the anti-particles are buried deep in the

Dirac sea and will not play a role in the following discussion.

On the Fermi surface, the free energy of the states are zero (more precisely, at the mini-

mum) and it costs no free energy to change momentum along the Fermi surface. Therefore,

the energy scales only in the radial direction of the sphere and we consider the renormaliza-

tion group flow as we scale the energy down toward the Fermi surface. The relevant degrees

of freedom are the particles and holes near the Fermi surface and we are interested in the

effective theory that describes the dynamics of those excitations. Let us specify a point on

the Fermi surface by the momentum ~pF with the magnitude |~pF | = µ and decompose a

four-momentum near this point as

pν = (E, ~pF +~l‖ +~l⊥) , (2.1)

where ~l‖ is parallel to ~pF and ~l⊥ is perpendicular to it. As stated before, only l‖ scales with

energy and l⊥ may be trivially integrated along the Fermi surface in a diagram computation.

We, therefore, have the 1 + 1-dimensional effective theory that describes the dynamics of

the particles and holes.4 It is important to notice that the kinematics is restricted because

3For a modern exposition of the BCS instability, see Polchinski’s TASI lecture notes [17].
4A rigorous derivation of the high density effective theory of QCD was carried out by Hong [18].
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the dynamics must take place near the Fermi surface. When we consider a particle-particle

or hole-hole scattering, it is clear that the scattering must be near back-to-back, that is,

the scattering pairs must be at antipodal points of the Fermi sphere. In the back-to-back

scattering, the scattering angle may be arbitrary without spoiling the kinematic restriction

and hence the phase space of this scattering is all over the Fermi surface.

Now in a two-dimensional theory, irrelevant operators of four dimensions may become

relevant or marginal. In particular, a four-fermion interaction is marginal in two dimen-

sions. If the interaction is attractive, the quartic coupling grows as we scale the energy

down toward the Fermi surface and it eventually hits the Landau pole. This implies that

the perturbation theory breaks down at the infrared scale around the pole. For the scat-

tering of particle or hole pairs, this indicates that the naive ground state of the weakly

interacting particles and holes near the Fermi surface, the Fermi liquid, is unstable against

the formation of Cooper pairs. This is the BCS instability, and the new ground state has a

gap due to the formation of the condensate whose size is roughly the location of the Landau

pole. Technically, as we will see in the next subsection, the instability is closely related

to the infrared divergence that appear in the perturbation theory and the gap properly

provides the infrared cutoff. In weakly coupled QCD, i.e., QCD at very high density, the

leading order contribution to the interaction is given by the one-gluon exchange and it is

attractive in the antisymmetric 3̄-channel, resulting in the color superconductivity.

We now turn to the DGR instability. This is associated with the scattering of the parti-

cle and hole located at the antipodal points of the Fermi sphere. In this case, the scattering

is not back-to-back, but near forward. Unlike the back-to-back case, the scattering angle

cannot be too large to stay near the Fermi surface and the phase space of the forward

scattering is limited to a very tiny patch on the Fermi surface. The difference in the phase

spaces for the BCS and DGR cases will be important in the quantitative computations.

Now the particle-hole forward scattering is similar to the Bhabha scattering whose

amplitude has the forward enhancement. Thus also in our case, we can expect an infrared

divergence (the DGR instability) as the exchange gluon becomes very soft, leading to a

condensate of the particle-hole pair (χDW). This, however, does not happen in weakly

coupled QCD. The reason is that the finite density screening effect completely overwhelms

such a condensate; it is the screening that provides the infrared cutoff and not the formation

of a condensate.

The situation is different in the largeNc limit (with small ’t Hooft coupling). First, note

that the Cooper pair of the BCS instability is not color singlet while the χDW of DGR is.

Therefore, the BCS instability is 1/Nc suppressed and DGR is not. Secondly, since only the

quarks are charged under the U(1)V -symmetry, the finite density screening effect is provided

by the quark loops, such as the one shown in Figure 1, and the gluon loops do not contribute

because the gluon propagator is independent of the quark chemical potential. This implies

that the finite density screening is suppressed as the number of the color is taken to a

large value. In fact, the DGR instability was discovered by disregarding the the screening

effect and the authors of reference [13] noted that the χDW can form and dominate over

the Cooper pairing at least in the large Nc limit. Later, Shuster and Son showed that the

DGR instability may occur if Nc & 1000Nf , where Nf is the number of the flavor [14].
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Figure 1: One loop diagram that contributes to the finite density screening.

D4

0
L

L/2
x 4

0,1,2,3

4

5,6,7,8,9

Nc

D8 Nf Nf D8

Figure 2: Sakai-Sugimoto brane configuration. The x4-direction is compactified with period L.

The D4 world-volume fermions have the anti-periodic boundary condition. We locate the Nf D8-

branes and Nf D̄8-branes at x4 = 0 = L and x4 = L/2, respectively.

This is an example where the large Nc limit of QCD yields qualitatively different prop-

erties. In weakly coupled QCD, χDW is not a relevant phenomenon. Though it could pos-

sibly compete with the Cooper pair at strong coupling, so far the situation is unclear [19].

2.1.2 Sakai-Sugimoto brane system at high density

We now consider whether the Sakai-Sugimoto model at high density exhibits similar prop-

erties as discussed above. For this purpose, we assume that the model is in the regime with

low energy and weak Yang-Mills coupling so that we can use the perturbative world-volume

field theory arguments.

The model is Type IIA string theory with D4-, D8- and D̄8-branes. The configuration

of the branes is shown in figure 2. The x4-direction is compactified to the circle of

circumference L and the D8D̄8-branes are placed at the antipodal points of the circle. To

discuss the low energy spectrum of the model, we first consider only the compactified Nc

D4-branes. In reference [20], Witten suggested that if we impose the anti-periodic boundary

condition to the adjoint world-volume fermions, the low energy world-volume theory has

the spectrum of 3 + 1-dimensional pure Yang-Mills theory. This is because the fermions

get tree level mass of order 1/L and the scalars, including the compactified component of

gauge field, A4, get the one-loop mass of order g/L, where g := g5/
√
L and g2

5 := (2π)2gsls,
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with gs string coupling and ls string length scale, and we assume g ≪ 1.5

Now, Sakai and Sugimoto insert the Nf D8 and Nf D̄8 branes as shown. As explained

in reference [21], there are massless fermions at the 3 + 1-dimensional intersection of D4-

and D8-branes. These are the lowest states of the strings stretching from D8 to D4. Since

the world-volume U(Nf )L gauge symmetry of D8-branes acts as the flavor symmetry, these

massless fermions are fundamental “quarks”. Similar massless fermions are also present at

the intersection of D4- and D̄8-branes. However, the GSO projection projects out opposite

chiralities to those fermions at different intersections. Therefore, we call the massless

fermions at D4D8 and D4D̄8 intersections as “left-handed (qL) and right-handed (qR)

quarks”, respectively.

This theory at low energy, therefore, has U(Nf )L × U(Nf )R flavor symmetry and the

theory appears to be very similar to the massless QCD, if Nc and Nf are appropriately

chosen. The difference, of course, is that the fermions with different chiralities are sepa-

rately located in the x4-direction and the gluons propagate in five dimensions, including

the x4-direction. As argued by Antonyan et al. [22], this QCD-like dynamics of the quarks

at the intersections does not change even if the period L is large; the shift symmetry of the

D4 adjoint scalars and the five dimensional gauge symmetry allow the scalars, including

A4, to couple to the fundamental fermions only through derivative interactins which is

suppressed by the string scale.

In the weak coupling analysis that we carry out in this section, we assume that the

period L is much larger than the string length scale ls so that the tachyon becomes heavy

and decouples.6 Also as we have already explained, we place the D8 and D̄8 branes at the

antipodal points of the compactified circle.

In examining this model, we need to decide on how the quarks interact through the

exchange of the gluons that propagate in the x4-direction. One possibility is the non-local

interaction. This scenario takes only into account of the zero-mode of the discrete mo-

mentum in the x4-direction. In this case, the theory becomes completely insensitive to

the existence of the fifth dimension and behaves in the same way as the four dimensional

QCD-like theory. We find this non-local scenario less appealing, especially when the com-

pactification scale L is large. We thus take the second alternative where the D8-branes are

treated as sources (or stiff walls) and allow the exchanged gluons to carry arbitrarily high

momenta in the x4-direction.7 Such an assumption is reasonable because the D8 branes

are infinitely heavier than the D4s and consistent with the fact that we are treating the

5Unlike four-dimensional case, other components of the gauge field do not acquire mass of order g2/L,

in all orders of the perturbation theory.
6When the D4-branes of the system are replaced with their effective geometry (which is not the case in our

discussion), the proper distance of the D8s becomes less than the string scale in the region sufficiently near

the horizon and the statement made here is no longer valid in the analysis with the background geometry.

Refs. [23 – 25] show that the tachyon indeed condenses and it is responsible for the chiral symmetry breaking

of the model at strong coupling.
7The gluon momenta actually have to be cut off below the string scale to avoid the derivative interactions

between the D4 adjoint scalars and the fundamental fermions. However, as we will see shortly, the high

momenta increasingly suppress the gluon propagator and their contributions become negligible at sufficiently

high scale. Therefore we can approximately take the x4-momentum to infinity.
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D8s as the flavor branes, that is, we are neglecting their fluctuations. The momentum is

not conserved in the x4-direction but this is natural in that the translation symmetry is

broken in this direction.

We now explain how we introduce the quark chemical potential. We have the global

symmetry SU(Nf )L × SU(Nf )R × U(1)V . The chemical potential that we are interested

in is conjugate to the U(1)V charge. The standard way to introduce a chemical potential

in a field theory is to treat it as the constant background “gauged” field of a U(1) global

symmetry, with all the components being zero except the time component. In this way,

the chemical potential modifies the time component of the covariant derivatives in the

Lagrangian of the theory. Thus in our case, the simplest way to introduce the quark

chemical potential is to turn on the A0 constant background gauge fields of U(1) ∈ U(Nf )L
and U(1) ∈ U(Nf )R world-volume gauge symmetries and tune them to an equal value.

Actually, the background fields may not be constant all over the D8-branes and the only

requirement is to have the constant value at the intersections with the D4-branes. Thus,

for example, we may turn on the field that depends on the radial direction in the 5,6,7,8

and 9 directions which would correspond to the nonzero electric field in the world-volume.

What we will find in the quantitative analysis of the next section is rather intuitive. As

we have mentioned, if we consider the effect only of the zero-mode momentum in the x4-

direction, the theory reduces to the QCD-like theory. Thus when the compactification scale

1/L is very large compared to the energy scale of the interest, in this case it is the value of

the chemical potential µ, we expect to have the BCS and DGR instabilities at Nc ≈ 3 and

at Nc → ∞, respectively, just as described before. Now as the compactification scale 1/L

gets smaller, the infrared effect in the x4-direction becomes comparable to the one that

leads to the regular BCS or DGR instability. As a consequence, the size of the condensate

grows and eventually becomes too large to maintain the dynamics near the Fermi surface.

Therefore, when the scale 1/L is small with respect to µ, there is no BCS or DGR type of

instability and the ground state of the theory is described by the Fermi liquid.

In this qualitative discussion, it is not clear at what scale this crossover occurs. The

computations of the next subsection show that at Nc ≈ 3 and µL & 1/g, no BCS-type

instability is present and at Nc → ∞ and µL & e1/
√

λ/
√
λ with λ := g2Nc, no DGR-type

instability happens. Notice that the DGR instability persists to exponentially larger value

of µL compared to the BCS case. This is because the phase space of the particle-hole

scattering is very small, in fact it is exponentially small, and the discrete momentum in the

compactified direction must become as fine as this scale to open up the extra dimension.

The situation explained here is schematically summarized in figure 3.

2.2 Quantitative discussion

We now demonstrate quantitatively what has been discussed in the previous subsection.

We carry out the renormalization group and Dyson-Schwinger analyses. The former is

more intuitive in accordance with the qualitative discussion and shows the existence of the

instabilities. But this method does not provide the size of the gap and this is augmented

by solving the Dyson-Schwinger equations.
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BCS

DWχ

Fermi Liquid

Nc

Lµ

Figure 3: A schematic phase diagram of the theory at weak coupling, high density and zero

temperature. Being schematic, the straight lines may not be straight nor sharp transitions in

reality.

Figure 4: Replacing the one-gluon exchange to an effective one point interaction.

We adopt the conventions of Wess and Bagger [26], except the definition of the Dirac

spinor;

ψ :=

(

qLα

q α̇
R

)

, ψ̄ := (q̄ α
R , q̄Lα̇) . (2.2)

We mainly work in the chiral basis. As a convention, the undotted and dotted spinors live

on the D8 and D̄8 branes, respectively.

Our central focus of this subsection is to show the existence of the instabilities and to

obtain the size of the gap. We are less interested in the exact color-flavor structure of the

condensate, so in what follows, we simplify the analysis by suppressing the flavor structure.

This is similar to Nf = 2 case where the Pauli principle requires the simpler quark pairing.

2.2.1 Renormalization group equations

Our first analysis is macroscopic in a sense that we introduce an effective one point four-

fermion coupling. Then we observe how the effective coupling evolves as we scale the energy

of the system down to the Fermi surface. This idea was first carried out in high density

QCD by Evans et al. in reference [27].

Since we are dealing with the weak coupling at high density, the quark interaction can

be approximated by a single gluon exchange. We then model the four-fermion interaction

by replacing the one-gluon exchange to a point, as shown in figure 4. Because the chemical

potential breaks the 3+1 world-volume symmetry down to O(3), we separately handle the

– 9 –
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Figure 5: The double line notations of the one-gluon exchange. The top and bottom sets represent

the symmetric (or antisymmetric) and singlet channels, respectively. If we fix the colors of the

incoming quarks, the symmetric channel has the fixed colors for the scattered quarks, while the

singlet channel has Nc choices.

couplings, G0 and Gj , as in

iG0(ψ̄γ0ψ)2 , iGj(ψ̄γjψ)2 . (2.3)

For the one-gluon exchange, we can further write

G0(D) = −Gj(D) := −g2
5X(D)F . (2.4)

Notice that we have included the minus sign from the signature in the definition of G0.

The constant g5 is the five dimensional Yang-Mills coupling as before, F is the form factor

that arises from the gluon propagator and

X(D) :=
1

2
{C(D) − 2C(�)} , (2.5)

with C(D) being the Casimir operator of SU(Nc) in the representation D and � being the

defining representation.

We consider three color channels; symmetric (symm), antisymmetric (asymm) and

singlet (•). For those cases, we have

X(symm) =
Nc − 1

2Nc
, X(asymm) = −Nc + 1

2Nc
, X(•) = −N

2
c − 1

2Nc
, (2.6)

where we have adopted the normalization tr(TαT β) = (1/2)δαβ for the Nc × Nc matrices

{Tα : α = 1, . . . , N2
c − 1} of the defining representation. Notice the large Nc behavior of

those factors. The singlet channel is larger than the other channels by a factor of Nc in

the absolute value. This can be easily understood in the double line notation of the single

gluon exchange diagrams, as shown in figure 5.

Let us now consider the form factor, F . The gluon propagator in the Feynman gauge

has the form 1/(p2 + p2
4) with the discrete momentum, p4 = 2πn/L, in the compactified

direction and this propagator suffers from an infrared divergence. To cure this problem, we

introduce an infrared cutoff m. We simplify the situation by assuming that m is the same

– 10 –



J
H
E
P
1
0
(
2
0
0
8
)
0
2
0

D8 D8

a
b

a
b

0,1

2,3
4

D8 D8D8

Figure 6: One-gluon exchange diagram. The gluons are propagating in the compactified x4-

direction. The D8D̄8-branes are treated as sources or stiff walls.

for the time and spatial components of the gluons.8 Possible one-gluon interactions are

illustrated in figure 6. In both cases shown in the figure, the discrete momentum is 2πn/L

because this is determined by the period of the compactification and not by the distance

between the branes. Therefore, the form factor, that arises from the gluon propagator, is

independent of the D8 brane distance and is the same for the both interactions in figure 6

(including the case with the gluons making many rounds in the compactified circle). We

follow Evans et al. [27] to obtain the form factor, namely, we take average of the gluon

propagator over the scattering phase space. For the dynamics very near the Fermi surface,

the energy and the component of the momentum in the radial direction of the Fermi

sphere are almost zero. Hence apart from the extra x4-direction, the phase space is two

dimensional along the Fermi surface. Let p1 and p2 be the incoming and outgoing momenta

of a scattering quark. We then have the gluon momentum

p2 = (p1 − p2)
2 ≈ 2µ2(1 − cos θ) , (2.7)

where θ is the scattering angle.

For the back-to-back scattering, the angle ranges from 0 to π and the phase space is

all over the Fermi surface. Therefore, the form factor in this case is

FBB =
1

NL

∞
∑

n=−∞

∫

d2p

p2 + (2πn/L)2 +m2

=
2π

NL
ln

[

sinh

(

1

2
mL
√

1 + 4µ2/m2

)

/ sinh

(

1

2
mL

)]

, (2.8)

8At very high density where the coupling is weak, one can expect the finite density Debye screening

of order gµ provides the infrared cutoff. This is true for the time component but not for the spatial

components. There is no static screening in the spatial (magnetic) components and the magnetic screening

is dynamical due to the Landau damping. This was pointed out by Son [28] and he discovered that the

dynamical screening effect leads to the qualitatively different form of the gap. We will take into account of

Son’s effect in the Dyson-Schwinger analysis.
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Figure 7: The diagrams that drive the renormalization group flow. The letters “L” and “R” refer

to left- and right-handed quarks, respectively.

where we have defined the total phase space factor N := 4πµ2. We have already carried

out the sum over the p4-discrete momentum because the p4 dependence is only in the gluon

propagator. As an effect, we have encoded all the information about the extra dimension

into the form factor. For the forward scattering of a particle-hole pair, the angle should

not take very large value so that the dynamics takes place near the Fermi surface. Thus

we require, in this case, the angle range from 0 to θUV, where the latter angle is much less

than π and limits the phase space to a little patch on the Fermi surface. The form factor

then takes the form

FFW =
1

ML

∞
∑

n=−∞

∫

d2p

p2 + (2πn/L)2 +m2

=
2π

ML
ln

[

sinh

(

1

2
mL
√

1 + 2(1 − cos θUV)µ2/m2

)

/ sinh

(

1

2
mL

)]

, (2.9)

where M := 2πµ2(1−cos θUV). Notice that since θUV ≪ π, we have MFFW < NFBB. This

fact will lead to the dominance of the BCS-type instability over the DGR type for Nc ≈ 3.

When the dimensionless parameter mL is small, the form factors behave logarithmically

with respect to the parameter µ/m and they behave linearly when mL is large. This is

because when the the compactified dimension is very small, the contributions from n 6= 0

is also small and the integral is effectively two dimensional, leading to the log behavior.

When the compactification size is very large, the discrete momentum becomes finer and

the integral essentially becomes three dimensional and the form factors behave linearly.

Having modeled the four-fermion interaction, we now derive the renormalization group

equations for the couplings. The diagram that drives the renormalization group flow is the

fermion one-loop diagram and we consider the three cases shown in figure 7. For Diagram

(a) in the back-to-back scattering, we can deduce from the expressions (2.3) that each

vertex corresponds to either

iG0
LLσ̄

0α̇ασ̄0β̇β , or iGj
LLσ̄

jα̇ασ̄jβ̇β . (2.10)

When the both vertices correspond to G0
LL, the diagram yields

(iG0
LL)2(σ̄0δ̇ασ̄0γ̇β)

∫

d4p

(2π)4

[

−i(pν − µδν,0)σ
ν
αα̇

(pλ − µδλ,0)2

−i(−pη − µδη,0)σ
η
ββ̇

(−pλ − µδλ,0)2

]

(σ̄0α̇δσ̄0β̇γ) ,

(2.11)

where we used the quark propagators shown in appendix A. Note that the momentum

integral is four dimensional rather than five. The dynamics of the quarks are restricted
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to the four dimensional intersections of the branes and the information about the extra

dimension has been encoded in the form factor. We decompose the momentum as in

equation (2.1) but redefine ~pF to include ~l⊥. Then near the surface of the large Fermi

sphere, the vectors ~pF and ~l‖ are near parallel and we also have E, l‖ ≪ µ and pF ≈ µ.

Under these approximations together with the use of the O(3)-invariance, the argument of

the square bracket in equation (2.11) becomes

−1

4

(

−σ0
αα̇σ

0
ββ̇ +

1

3
σj

αα̇σ
j
ββ̇

)

1

E2 − l2‖
. (2.12)

One can integrate over E, either by the contour integral or by the Wick rotation, then

|l‖| is integrated from the scale ΛUV down to ΛIR. One can also simplify the σ-matrices

(all the necessary formulas are given in appendix B of Wess and Bagger [26]) and the

expression (2.11) becomes

iN
16π3

(G0
LL)2

(

σ̄0δ̇δσ̄0γ̇γ − 1

3
σ̄jδ̇δσ̄jγ̇γ

)

t , (2.13)

where we have defined t := ln(ΛIR/ΛUV). This parameter t has the range (−∞, 0) and the

lower limit corresponds to the Fermi surface. When one of the vertex of Diagram (a) is G0

and the other is Gj , similar procedure yields

iN
16π3

(G0
LLG

j
LL)

(

−2σ̄0δ̇δσ̄0γ̇γ +
10

3
σ̄jδ̇δσ̄jγ̇γ

)

t , (2.14)

and when the vertices are both Gj , we get

iN
16π3

(Gj
LL)2

(

5σ̄0δ̇δσ̄0γ̇γ − 13

3
σ̄jδ̇δσ̄jγ̇γ

)

t . (2.15)

From those results, we obtain the renormalization group equations

dG0
LL

dt
=

N
16π3

{

−(G0
LL)2 + 2G0

LLG
j
LL − 5(Gj

LL)2
}

,

dGj
LL

dt
=

N
16π3

{

1

3
(G0

LL)2 − 10

3
G0

LLG
j
LL +

13

3
(Gj

LL)2
}

. (2.16)

These equations can be diagonalized to the following forms

d(G0
LL − 3Gj

LL)

dt
= − N

16π3
(G0

LL − 3Gj
LL)2 , (2.17)

d(G0
LL +Gj

LL)

dt
= − N

48π3
(G0

LL +Gj
LL)2 . (2.18)

One can carry out the same procedure for the back-to-back scattering of Diagram (b) in

figure 7 and obtain

d(G0
LR + 3Gj

LR)

dt
= 0 , (2.19)

d(G0
LR −Gj

LR)

dt
= − N

24π3
(G0

LR̄ −Gj
LR̄

)2 . (2.20)
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Above four renormalization group equations are obtained by Evans et al. [27] (but with

different form factors).

The Diagram (c) of figure 7 is similar to the case with (a) [and not with (b) because

q̄R has an undotted spinor index just as qL]. But we should recall that we are interested

in the forward scattering in this case. Therefore in the loop, the top left-handed quark

propagator carries the momentum (E, ~pF + ~l‖) and the bottom right-handed one carries

(E, −~pF +~l‖) in the directions of the arrows in the quark loop. Then the propagator part

of the diagram corresponding to (2.12) of the Diagram (a) is

−1

4

(

σ0
αα̇σ̄

0β̇β − 1

3
σj

αα̇σ̄
jβ̇β

)

1

E2 − l2‖
. (2.21)

This structure is the same as the LL-case (a), except the overall sign. This sign is cancelled

by the other one that comes from the difference in the direction of the quark line. Thus,

apart from the integration range of the scattering angle θ, the cases (a) and (c) are the

same. So we have for Diagram (c),

d(G0
LR̄

− 3Gj
LR̄

)

dt
= − M

16π3
(G0

LR̄ − 3Gj
LR̄

)2 , (2.22)

d(G0
LR̄

+Gj
LR̄

)

dt
= − M

48π3
(G0

LR̄ +Gj
LR̄

)2 . (2.23)

Now for the generic form of the renormalization group equation

dG(t)

dt
= −KG(t)2 , (2.24)

with some constant K, the Landau pole, if exists, is reached at

tLP = − 1

KG(0)
. (2.25)

Since the range of t is (−∞, 0), the Landau pole exists only when KG(0) is positive and

the larger the factor KG(0) is, the faster the pole is reached. We note that because of the

constants N and M in the form factors (2.8) and (2.9), the Landau pole is independent

of those. From equations (2.4) and (2.6), and also with the fact that MFFW < NFBB,

we see that the instability is dominated by the BCS type in the LL, color antisymmetric

channel for Nc ≈ 3. Note that the color symmetric channel does not have instability

because the interaction in this channel is repulsive. When Nc is sufficiently large, the LR̄-

channel, whose coupling is proportional to the product of X(•) and FFW, dominates over

the other channels because the inequality MFFW < NFBB is compensated by the fact that

|X(asymm)| < |X(•)|. Thus the DGR-type instability dominates over BCS in this regime.

In our method here, it is not possible to estimate the value of Nc at which the crossover

from the BCS- to DGR-type instability occurs, because we crudely introduced the common

infrared cutoff, m, to all the components of the gluon propagator and we do not have the

actual value of θUV. See Shuster and Son [14] for the estimate of the value Nc.

Recall that the form factors grow linearly when the parameters mL and µ/m are large

and the effective four-fermion couplings become large accordingly. We thus expect that
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Figure 8: The diagrammatic representation of the Dyson-Schwinger equation for the diquark

condensate. The triangle denotes the gap insertion. The square in the gluon propagator represents

the screening effect.

the whole analysis breaks down when those parameters are exceedingly large, and we need

to resort to the microscopic analysis, i.e., the analysis with the fundamental interactions,

to gain insight into the nature of the pathology. This is the subject of the next analysis.

2.2.2 Dyson-Schwinger equations

We now turn to the analysis based on the Dyson-Schwinger equations. The traditional form

of the Dyson-Schwinger equation in the diagrammatic representation is shown in figure 8.

This method is less intuitive compared to the previous renormalization group analysis, but

it lets us obtain the actual size of the gap. This analysis is microscopic which deals with

the quarks rather than the quasi-particles of the effective theory and interactions are the

QCD interactions rather than the effective ones.

As usual, we adopt the Nambu-Gor’kov formalism (see, e.g., reference [9]). In order to

introduce the Nambu-Gor’kov basis, we define the charge conjugate Dirac spinors as ψC :=

Cψ̄T and ψ̄C := ψTCT where the charge conjugation matrix C is defined in appendix A.

In the Weyl basis, these can be expressed as
(

q̄c
Rα

q̄c α̇
L

)

=

(

(iσ2
αβ̇ σ̄

0β̇γ)q̄Rγ

(iσ̄2α̇β σ0
βγ̇)q̄ γ̇

L

)

, (qc α
L , qc

Rα̇) =
(

qL
γ(−iσ2

γβ̇ σ̄
0β̇α), qRγ̇(−iσ̄2γ̇β σ0

βα̇)
)

.

(2.26)

Then we define the Nambu-Gor’kov basis as

Ψ :=
1√
2

(

qLα, qR
α̇, q̄c

Rβ, q̄
c β̇
L

)T
, Ψ̄ :=

1√
2

(

q̄ α
R , q̄Lα̇, q

c β
L , qc

Rβ̇

)

. (2.27)

The advantage of the Nambu-Gor’kov formalism is that we can naturally include the con-

densates in the propagator of Ψ. For example, the diquark condensate in the s-wave (LL

or RR condensate) is given as

ψTCTγ5ψ = −iqc
LqL + iqc

RqR , (2.28)

thus the inverse propagator that contains this condensate can be written as

G(p)−1 = −i











0 (pν − µδν,0)σ
ν i∆̄R(p) 0

(pν − µδν,0)σ̄
ν 0 0 −i∆̄L(p)

i∆L(p) 0 0 (pν + µδν,0)σ
ν

0 −i∆R(p) (pν + µδν,0)σ̄
ν 0











. (2.29)

The ∆-matrices appearing in the inverse propagator are defined as

∆L,R(p) = ∆+(p)PL,R+(p) + ∆−(p)PL,R−(p) , (2.30)
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Figure 9: The left diagram represents the right-hand side of the Dyson-Schwinger equation (fig-

ure 8) for LL-diquark condensate. On the right panel is the similar diagram with LR-diquark

condensate. This clearly is not making sense, because the condensate (the triangle) is separated

and also is not being able to flip the helicity.

where ∆±(p) are the gaps and the quark (anti-quark) on-shell projectors, PL,R±(p), are

defined in appendix A. The ones with the bar can be obtained by replacing P → P̄ in the

above expression. (We assume the gaps to be real.) We can invert the matrix (2.29) by

using the formulas listed in appendix A.9 If we write

G(p) =

(

G11 G12

G21 G22

)

, (2.31)

we then have

G21 =





− ∆+PL−

p2
0
−(|~p|−µ)2−∆2

+

− ∆
−

PL+

p2
0
−(|~p|+µ)2−∆2

−

0

0
∆+PR−

p2
0
−(|~p|−µ)2−∆2

+

+
∆

−
PR+

p2
0
−(|~p|+µ)2−∆2

−



 , (2.32)

and other components will not be important in writing down the Dyson-Schwinger equa-

tions. Notice that if the condensates, ∆±, in the denominators vanish there are terms that

diverge as the energy is scaled toward the Fermi surface, i.e., p0 → 0 and |~p| → µ. This is

essentially due to the sign structure of the chemical potential in the matrix (2.29) and to the

fact that the ∆-matrices occupy off block-diagonal components. This infrared divergence is

cured by the formation of the condensate and the ∆ properly behaves as such a condensate.

If this were the traditional four-dimensional set up, we could have introduced the p-

wave diquark condensate (LR-pair) in the Nambu-Gor’kov propagator. [Such condensate

would have occupied the anti-diagonal slots of the matrix (2.29).] However, this is not

allowed in our theory. As shown in figure 9, since qL and qR separately live on the D8

and D̄8 branes, the Dyson-Schwinger equation for such condensate cannot make sense.

In the previous macroscopic renormalization group analysis, we encoded all the informa-

tion about the extra dimension in the form factors and the left- and right-handed quarks

effectively lived in the same four dimensional spacetime. However, in this microscopic

9Note that the projectors are not invertible, so one must use appropriate inversion formulas.
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Dyson-Schwinger analysis, we see that it is actually not possible for the LR-condensate to

form. We emphasize that the condensate is not being energetically suppressed but simply

not possible to form in the brane system of Sakai and Sugimoto.10

For the particle-hole (LR̄ or L̄R) pair, we might naively introduce the condensate in

the diagonal slots of the matrix in (2.29). However, this represents the introduction of the

usual chiral condensate, that is, the pair of particle and anti-particle, and not the desired

particle-hole pair. One can verify in this case that the infrared divergence near the Fermi

surface is not present. Thus, the Nambu-Gor’kov basis is not suitable for introducing the

particle-hole chiral condensate. Instead, we propose to use the doubled basis,

1√
2

(

qLα, qR
α̇, qLα, qR

α̇
)T

, (2.33)

and consider the inverse propagator of the form (2.29) with the replacements, i∆L → ΣL,

−i∆R → ΣR, −i∆̄L → Σ̄L and i∆̄R → Σ̄R, where the Σ-matrices are similarly defined

as for the ∆-matrices. The spinors of the second set have the chemical potentials in their

kinetic terms with opposite sign from the first set. This effectively introduces the hole

degrees of freedom. In this case, the propagator has the infrared divergence near the Fermi

surface and the Σ-condensate provides the cutoff. Thus we properly have the interpretation

that the condensate is the particle-hole pair near the Fermi surface. We note that since

the condensate is formed out of the spinors with the dotted- or undotted-index pair, and

not the mixed one, the condensate lives either on D8 or D̄8 branes and not across them.

We must also consider the gluon propagator which is the other ingredient of the Dyson-

Schwinger equation. Unlike previous macroscopic treatment, we properly take into account

of the perturbatively computable screening effect. The most general form of the O(3)-

invariant gluon propagator is

Dµν(p, n) =
P T

µν(p)

p2 + (2πn/L)2 +Gs(p)
+

PL
µν(p)

p2 + (2πn/L)2 + Fs(p)
, (2.34)

where Fs and Gs are the electric and magnetic screenings, respectively, and the projectors

are defined as

P T
ij (p) = ηij −

pipj

|~p|2 , P T
00(p) = 0 = P T

01(p) , P
L
µν(p) = ηµν − pµpν

p2
− P T

µν . (2.35)

We have dropped the term with the gauge fixing parameter in the propagator. This term

has been verified not to contribute to the gap, the solution to the Dyson-Schwinger equa-

tion, at very large chemical potential [31].

As explained in section 2.1, the finite density screening effect is given by the diagram

shown in figure 1, at one-loop level. Since the quark loop stays on the D8 or D̄8 branes, there

is no extra dimensional effect on the screening, and the gluons with nonzero momentum in

10Refs. [29, 30] discuss the condensation of a gauge invariant particle-antiparticle pair across the D8 and

D̄8 branes at strong coupling. Although it is possible that this sort of condensation forms in our situation,

we note that we are considering the condensation of a particle pair which is not gauge invariant and at

weak coupling. Therefore, this possibility is not taken into account in our discussion here.
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the x4-direction, such as the case shown in figure 9, do not have the screening. We thus

have the standard expressions [32]

Fs(p) = 2m2
D

p2

|~p|2
[

1 − p0

|~p|Q0

(

p0

|~p|

)]

δn,0 ,

Gs(p) = m2
D

p0

|~p|

[{

1 −
(

p0

|~p|

)2
}

Q0

(

p0

|~p|

)

+
p0

|~p|

]

δn,0 ,

Q0(x) =
1

2
ln

∣

∣

∣

∣

1 + x

1 − x

∣

∣

∣

∣

− i
π

2
θ(1 − x2) , m2

D =
1

4π2
Nfg

2µ2 , (2.36)

where θ is the Heaviside function and δn,0 signifies that the screening is effective only for

the gluons with n = 0.

We can now write down the Dyson-Schwinger equation. We start with the equation for

the ∆-condensate. At high density (weak coupling), we can approximate the quark-gluon

vertex with the bare ones and we have

G(k)−1 −G0(k)
−1 = −ig2X(D)

∑

n

∫

d4p

(2π)4
ΓµG(p)ΓνDµν(q, n) . (2.37)

We have included the color factor X(D) as in Equations (2.6) and the representation D is

either symmetric or antisymmetric depending on the channel that G is in.11 Also we have

defined G0 as G without the condensates, q := k − p, and Γµ are

Γµ :=











0 σµ 0 0

σ̄µ 0 0 0

0 0 0 −σµ

0 0 −σ̄µ 0











. (2.39)

We can use (2.29), (2.32) and (2.37) to obtain the gap equation

∆±(k) =ig2X(D)
∑

n

∫

d4p

(2π)4

× tr

[

σµ

(

∆+(p)PR−(p)

p2
0 − (|~p| − µ)2 − ∆2

+

+
∆−(p)PR+(p)

p2
0 − (|~p| + µ)2 − ∆2

−

)

σ̄νPL±(k)

]

Dµν(q, n) ,

(2.40)

where the trace is over the spinor indices and is taken to project out ∆± from the ∆L-matrix

11The easiest way to see how this color factor comes in is to note that

X

a

T α
abT

α
cd =

1

2
X(symm)(δabδcd + δadδbc) +

1

2
X(asymm)(δabδcd − δadδbc) . (2.38)
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in equation (2.30). After some algebra, one obtains

∆+(k0) ≈− ig2X(D)
∑

n

∫

d4p

(2π)4

×
[

∆+(p0)

p2
0−(|~p|−µ)2−∆+(p0)2

(

1 − (p̂ · q̂)(k̂ · q̂)
q2+(2πn/L)2+Gs(q)

+
1
2 + 1

2 p̂ · k̂
q2+(2πn/L)2+Fs(q)

)

+
∆−(p0)

p2
0−(|~p|+µ)2−∆−(p0)2

(

1 + (p̂ · q̂)(k̂ · q̂)
q2+(2πn/L)2+Gs(q)

+
1
2 − 1

2 p̂ · k̂
q2+(2πn/L)2+Fs(q)

)]

,

(2.41)

where we have assumed that the gaps are functions only of k0 or p0. In deriving this

equation, we have adopted the approximation, q0 ≪ |~q| ≈ µ, so that PL
µν ≈ ηµνδµ,0δν,0.

The equation for ∆−(k0) is the same except that the two terms in the round brackets are

exchanged. Note that only the first term in the equation of ∆+(k0) has the near-Fermi-

surface (infrared) divergence that is being cured by the formation of the condensate. Thus

to the first approximation in large µ, we can neglect the second term. Similar observation

in the equation of ∆−(k0) results in the conclusion that this gap does not form at near the

Fermi surface.

Now as before, we set ~p = ~pF +~l‖, and approximate |~pF | ≈ µ, p̂F · l̂‖ ≈ 1, |~p| ≈ µ+ l‖
and q2 ≈ 2µ2(1− p̂ ·k̂). Then the integration measure takes the form µ2dp0dl‖d cos θdφ with

cos θ := p̂ · k̂. Since the integral is dominated by the region θ ≈ 0, we further approximate

that p̂ · k̂ ≈ 1 and p̂ · q̂ ≈ 0 ≈ k̂ · q̂ in the numerators of the integral, but not in the

denominators. We Wick rotate p0 → ip0 and integrate over l‖ and φ. The gap equation

now takes the form

∆+(k0) ≈ − g2

8π2
X(D)

∑

n

∫

dp0d cos θ

(

1

1 − cos θ + (1/2){2πn/(µL)}2 +Gs(q)/(2µ2)

+
1

1−cos θ+(1/2){2πn/(µL)}2+Fs(q)/(2µ2)

)

∆+(p0)
√

p2
0+∆+(p0)2

,

(2.42)

with the approximate form of the screenings

Fs(q) ≈ 2m2
D δn,0 , Gs(q) ≈

π

2
m2

D

q0
|~q| δn,0 . (2.43)

From this equation, it is clear that for the symmetric channel D = symm, we only have

the trivial solution ∆+ = 0.12 We thus consider the antisymmetric channel from now on.

In equation (2.42), the sum over n and integral over θ can be carried out in a straight-

forward manner and yields

∆+(k0) ≈
g2

12π2

Nc + 1

2Nc

∫

dp0 ln

(

Λ

|k0 − p0|

)

∆+(p0)
√

p2
0 + ∆+(p0)2

, (2.44)

12If the flavor structure is included, this conclusion gets slightly more complicated. However, the fact

that the antisymmetric channel dominates over the symmetric one does not change. See, for instance,

reference [33].
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where we have defined

Λ := 210
√

2π4N
−5/2
f g−5µ{sinh(µL)/(µL)}4 , (2.45)

and the part, {· · · }4, is the contribution from the sum over n 6= 0. The factor |k0 − p0|
appearing in the logarithm comes from the Landau damping of Gs(q) as in (2.43) and this

effect was first discussed by Son [28]. We can follow appendix B of reference [28] to solve

this equation and obtain

∆+(k0) = ∆0 sin

(
√

12π2

g2

2Nc

Nc + 1
ln

Λ

k0

)

, with ∆0 = Λexp

[

−π
2

√

12π2

g2

2Nc

Nc + 1

]

.

(2.46)

Let us comment on this result. We first note that the gap vanishes in the ’t Hooft limit.

This is consistent with what we have concluded in the renormalization group analysis. Now,

when µL ≪ 1, we have sinh(µL)/µL ≈ 1, so the extra dimensional effect in Λ disappears

and the resulting expression for the gap coincide with the QCD result for Nc = 3. (See,

for example, reference [1].) In the opposite limit where µL → ∞, we have sinh(µL) →
exp(µL)/2, so the extra dimensional effect contributes heavily and the gap grows with

the parameter µL. As one can observe in equation (2.42), this is because the infrared

effect of the terms with n 6= 0 comes to be comparable to that of the n = 0 term. From

equation (2.46), we see that at µL ∼ 1/g, the gap is much larger than the size of the Fermi

sphere itself and such a solution cannot be accepted, for the dynamics is no longer taking

place near the Fermi surface. We therefore conclude that when µL ∼ 1/g, the gap does

not form and the ground state simply is described by the Fermi liquid.

We now turn to the Σ-condensate, χDW. The computation is almost identical to the

previous case and we arrive at the equation similar to equation (2.42) with the replacements

∆+ → Σ+ and D → • . There are, however, a few differences. The most important one

is the range of the integration parameter θ. This is restricted to the near infrared region,

i.e., θ ≈ 0, because this is a forward scattering and the exchanged gluon should not be

harder than the size of the gap or the momentum carried by the propagator G(k). When

the angle is set to small value, the l‖ component is about µ(1− cos θ), and the propagator

carries the momentum approximately
√

p2
0 + Σ2

+. We thus require

µ(1 − cos θ) ≤
√

p2
0 + Σ2

+ , (2.47)

and this inequality sets the upper limit on θ. Now because of this kinematic restriction,

when Nc ≈ 3, the ∆-condensate dominates over the Σ-condensate. Therefore, in the

following, we consider the ’t Hooft limit (with small λ). In this limit, the screening Fs

and Gs is 1/Nc-suppressed, so we drop the screening terms from the gap equation. In the

absence of the screening, the approximation, q2 ≈ 2µ2(1 − cos θ), has infrared problem

when n = 0. This means that q20 cannot be neglected in this case and we must use
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q2 ≈ 2µ2(1 − cos θ) + |k0 − p0|2δn,0. We thus have the gap equation for the Σ-condensate

Σ+(k0) =
g2

8π2

N2
c − 1

2Nc

∑

n

∫

dp0d cos θ

× 2

1 − cos θ + |k0 − p0|2/(2µ2)δn,0 + (1/2){2πn/(µL)}2

Σ+(p0)
√

p2
0 + Σ+(p0)2

, (2.48)

where the integration range of θ is restricted as mentioned above.

Let us first consider the case with n = 0. In this case, we can carry out the cos θ

integral with the restriction (2.47) and obtain

Σ+(k0) ≈
g2

8π2

N2
c − 1

Nc

∫

dp0 ln

(

2µ
√

p2
0 + Σ+(p0)2

|k0 − p0|2

)

Σ+(p0)
√

p2
0 + Σ+(p0)2

. (2.49)

We can again solve this equation following Son [28] (also see [19]). In this case, the calcu-

lation is slightly different from Reference [28], so it is shown in appendix B. The result is

Σ+(k0) = Σ0 cos





√

g2

4π2

N2
c − 1

Nc
ln

2µ

k0



 , with Σ0 = 2µ exp

[

−π
√

4π2

g2

Nc

N2
c − 1

]

.

(2.50)

This result agrees with reference [13].

When we include the terms with n 6= 0, the logarithm term in equation (2.49) gets

augmented as

ln
2µ
√

p2
0 + Σ+(p0)2

|k0 − p0|2
+ 4 ln

sinh(µLǫ1/2)

µLǫ1/2
, (2.51)

where ǫ :=
√

p2
0 + Σ2

+/µ. If µL is not too large compared to ǫ1/2, then the second term

in the above expression is small and the result (2.50) does not change. However, when µL

is so large that the second term yields dominant contribution ∼ µLǫ1/2, the integrand of

the gap equation (2.49) takes the from proportional to 1/(p2
0 + Σ2

+)1/4, which is free of the

infrared divergence even without the condensate Σ. This implies that the gap does not

exist. To roughly estimate the value of µL at which the crossover occurs, we approximate

the first term in equation (2.51) as ln(2µ/Σ0) and the second term as µL(Σ0/µ)1/2. Then

we see that the second term becomes important when

µL & (µ/Σ0)
1/2 ln(µ/Σ0) ≈ e1/

√
λ/
√
λ . (2.52)

3. Comments on the strong coupling regime

We have addressed the possibilities of the color superconductivity and the chiral density

waves in the Sakai-Sugimoto model at finite density and explicitly carried out the compu-

tations in the weak coupling limit. As was stated in the introduction, the ultimate goal

of this investigation is to obtain the quantitative behavior of the model in the weak and

strong coupling regions, make qualitative comparison of the phase diagrams and gain in-

sight into the QCD phase diagram which is still unsettled. We therefore comment on the

strong coupling gravity background analysis of the model at finite density.
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confined(a)
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(b) deconfined

τ

(c) deconfined χ

Figure 10: The spacetime configurations of the three phases. The vertical axis U is the radial

direction in 5,6,7,8 and 9 directions. The thinner lines represent the stacks of D8 and D̄8 branes.

Diagram (a) is the low temperature confined phase. The chiral symmetry is broken in this phase.

Diagram (b) is the high temperature deconfined phase and with χSB. Diagram (c) is also the high

temperature deconfined phase but with chiral symmetry restored.

As suggested by Sakai and Sugimoto [15], the strong coupling analysis is done by taking

the gravity background limit of the D4-branes while treating the D8-branes as probes,

then the DBI-action of the probes are studied to obtain the spectrum of the low energy

excitations at strong coupling. The generalization to the finite density has been discussed

in References [34 – 36]. The phase diagram of the model in the space of temperature

and chemical potential has been obtained by Horigome and Tanii [35]. Let us briefly

review their results. In the previous section, we have placed the D8- and D̄8-branes at

the antipodal points of the compactified circle. However, this is not necessary and in

this gravity background analysis, the compactification radius is set to R and the distance

between the branes to L with the range 0 < L ≤ πR.

At finite temperature, in addition to the x4-direction, the Euclidean time direction, τ , is

also compactified and the period of the time circle is identified with the inverse temperature.

Horigome and Tanii consider the three known phases, first discovered by Aharony et al. [37]

at zero density, and the spacetime configurations for the phases are illustrated in figure 10.

In the figure, the vertical U -axis represents the radial direction in 5,6,7,8 and 9 directions.

The change in the background geometry of the phases from (a) to (b,c) is interpreted as

the confinement/deconfinement phase transition by Aharony et al. The thinner lines and

curves in the diagrams represent the D8 or D̄8 branes and the change in the configuration

from Diagram (b) to (c) is interpreted as the chiral symmetry restoration.

The on-shell DBI actions of the D8-branes with nonzero chemical potential have been

obtained by Horigome and Tanii for each phase. For the configurations with the smooth U-

shaped D8-branes, that is, for the diagrams (a) and (b) of figure 10, they have found that the

chemical potential must be constant along the radial U -direction and the actions for those

configurations are independent of the chemical potential. Only for the parallel D8-brane

configuration of Diagram (c) has the non-trivial dependence on the chemical potential in

its action. By comparing the on-shell actions at the various values of the temperature and

the chemical potential, they determined the phase diagram which is schematically shown

in figure 11.13

13In reference [35], the temperature and chemical potential are measured in different units. If measured

in the same units, the chemical potential is asymptotically larger than the temperature by the factor of the

’t Hooft coupling λ.
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SBχ
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Deconfined

Deconfined

L > 0.97 R L < 0.97 R(a)

T

Figure 11: The schematic phase diagram obtained by Horigome and Tanii. The temperature Tc

denotes the confinement/deconfinement phase transition temperature. The inter-D8D̄8 distance

L ≃ 0.97R is the critical value where the deconfined phase with χSB exists.

The confinement/deconfinement phase transition line at T = Tc is determined by the

D4-background geometry and the D4 difference action in those phases scales as N2
c [37].

This is expected to completely dominate the D8 probe actions, which scale as NcNf , so

the confinement/deconfinement phase transition line is not affected by the value of the

chemical potential.14 Therefore, Horigome and Tanii assume that the phase below the con-

finement/deconfinement line is in the configuration (a) of figure 10, and compare the D8

actions of the configurations (b) and (c) in the deconfined D4-background geometry to ob-

tain the phase structure above the confinement/deconfinement phase transition line. This is

why the χS/χSB phase transition line of the right panel in figure 11 is terminated at T = Tc.

When the inter-D8D̄8 distance L is larger than 0.97R, it has been shown by Aharony et

al. [37] that the phase represented in Diagram (b) of figure 10 does not exist. Therefore,

the phase diagram becomes rather structureless, as shown in the left panel of figure 11.

The analysis of Horigome and Tanii assumes only three possible phases and this is

similar to the simplified picture of QCD where one assumes only hadronic and quark-gluon

plasma phases. In the latter, it is expected that when the chemical potential is raised several

times ΛQCD (at low temperature), the hadrons start to overlap and the quarks are shared

by many hadrons. This implies the change in the degrees of freedom and since only the two

phases are assumed, there should be a phase transition. Stated differently, in this simplified

picture of QCD, we expect that a phase transition to occur even at zero temperature. See

figure 12.15 Though the physical setups are similar, we see that the phase diagrams in

figures 11 and 12 are qualitatively different. We suspect that the discrepancy stems from

the large Nc limit and the probe approximation in the Sakai-Sugimoto model. As we have

explained, the confinement/deconfinement phase transition is determined by the D4 actions

because the difference action scales with N2
c and dominates over the D8 actions (with the

14In the original version of this e-print, we overlooked the dominance of the D4 action and compared only

the D8 actions in the confined and deconfined phases, which was incorrect.
15It is interesting to observe that the weakly coupled large Nc N = 4 super-Yang-Mills theory on three

sphere and Type IIB supergravity on AdS5 × S5 both have qualitatively the same phase structure as

figure 12 [38 – 40]. In these cases, however, the chemical potential is conjugate to the U(1) subgroup of

SU(4) R-symmetry.
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Figure 12: Expected phase diagram of the simplified QCD where only the hadronic and quark-

gluon plasma phases are assumed to exist.

chemical potential). It is unlikely that this picture can change in the probe approximation.

Therefore, in order to see modifications in the confinement/deconfinement phase transition

line, one should take into account of the D8-brane back reaction to the geometry.

It is also clear that we do not observe the color superconductivity or chiral density

waves in the strong coupling analysis of Horigome and Tanii because these possibilities

are simply not considered. To explore those exotic phases, one must come up with the

corresponding stringy pictures of the branes and strings, and see if they are energetically

preferred at any point in the µ-T parameter space. Such stringy pictures of quark matter

are, so far, not clear to us.16 Nevertheless, we make some general remarks in this direction.

First, we must remember that the relevant degrees of freedom at high density are particles

and holes while the anti-particles are buried deep in the Dirac sea. Thus, if the U-shape

configuration of the D8-branes describes the mesons, which are the pairs of particle and

anti-particle, then we expect the configuration of the superconductor or chiral density waves

to be different from the U-shape configuration because they are the pairs of particles and

holes. Secondly, the Fermi sphere plays the essential role in high density QCD. Thus, the

Fermi sphere must be encoded in the holographic picture somehow. Also, the holography

is in the ’t Hooft limit under which we do not expect non-gauge invariant quantities to

survive. Therefore, it is likely that we do not observe the color superconducting phase and

the relevant phase probably is the chiral density waves in the holographic theories.

Although Shuster and Son [14] settled that the color superconductivity dominates over

the chiral density waves in the high density weakly coupled QCD (with Nc = 3), it still is

not known if this observation persists at the medium density strong coupling region. The

Sakai-Sugimoto model in the usual ’t Hooft limit is not likely to be able to address this

problem but it is interesting to examine this in the limit with Nf/Nc fixed. In this case, we

can expect the effect of the color-flavor locking to be significant and also the competition

between the D4 and D8 actions becomes non-trivial.

Finally, as we have mentioned in the introduction, the rich structure of the QCD phase

diagram is partly due to the quark masses. As the authors of reference [21] have already

16The stringy configurations of baryons have been suggested in refs. [41, 42] in which the nuclear matter

phase has been discovered in the phase diagram.
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noted, the inclusion of the quark masses involves the tachyon that comes from the string

stretching between the D8 and D̄8 branes. This subject is being actively studied (for

example, see refs. [23 – 25, 29, 30]) and the resulting phase diagram is yet to be seen.

If the finite density holographic model turns out to capture the aspects of QCD, it

would be very interesting because we can explore the region of the QCD phase diagram

where the perturbative nor the numerical analysis is available.
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A. Some formulas

We adopt the convention of Wess and Bagger [26], except the definition of the Dirac spinor

as in equation (2.2). Many useful formulas can be found in appendix B of the reference.

The propagators of the left- and right-handed quarks are respectively given as

−i(pν − µδν,0)σ
ν
αα̇

(pλ − µδλ,0)2
, and

−i(pν − µδν,0)σ̄
να̇α

(pλ − µδλ,0)2
. (A.1)

We define the charge conjugation matrix

C :=

(

iσ2σ̄0 0

0 iσ̄2σ0

)

, (A.2)

which satisfies C−1γνC = −γνT and C−1 = CT = −C.

The quark and anti-quark on-shell projectors are defined as

PL±(p) :=
1

2

(

1 ± σ0σ̄j p̂j

)

, PR±(p) :=
1

2

(

1 ± σ̄0σj p̂j

)

,

P̄L±(p) :=
1

2

(

1 ± p̂jσ̄
jσo
)

, P̄R±(p) :=
1

2

(

1 ± p̂jσ
jσ̄0
)

, (A.3)

where p̂ := ~p/|~p|. Notice that PL± = P̄R∓ and PR± = P̄L∓.

We list the useful formulas for inverting the inverse of the Nambu-Gor’kov propagator.

For n× n matrices A, B, C and D, we have

(

A B

C D

)−1

=

(

A−1 +A−1BS−1
A CA−1 −A−1BS−1

A

−S−1
A CA−1 S−1

A

)

, (A.4)

provided that the matrices A and SA := D − CA−1B are invertible. We also have

(

A B

C D

)−1

=

(

−C−1DS−1
C C−1 + C−1DS−1

C AC−1

S−1
C −S−1

C AC−1

)

, (A.5)
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provided that C and SC := B −AC−1D are invertible. Other convenient formulas are the

following.

(pν − µδν,0)σ
ν =(p0+|~p|−µ)σ0PR++(p0−|~p|−µ)σ0PR− ,

(pν − µδν,0)σ̄
ν =(p0+|~p|−µ)σ̄0PL++(p0−|~p|−µ)σ̄0PL− . (A.6)

{(pν−µδν,0)σ
ν}−1 =

σ̄0PL+

p0 − |~p| − µ
+

σ̄0PL−
p0 + |~p| − µ

,

{(pν−µδν,0)σ̄
ν}−1 =

σ0PR+

p0 − |~p| − µ
+

σ0PR−
p0 + |~p| − µ

. (A.7)

PL± σ
0PR±=0 , PL± σ

0PR∓ = σ0PR∓ ,

PR± σ̄
0PL±=0 , PR± σ̄

0PL∓ = σ̄0PL∓ .

(A.8)

B. Solving gap equation

We solve equation (2.49), following References [28, 19]. We split the integration range into,

0 < p0 < k0 and k0 < p0 < 2µ. Then the dominant contributions in the logarithms of the

integrand are ln 2µp0

k2
0

= 2 ln 2µ
k0

− ln 2µ
p0

for the former integration region and ln 2µ
p0

for the

latter. We introduce the parameters

x := ln
2µ

k0
, y := ln

2µ

p0
, x0 := ln

2µ

Σ0
, (B.1)

where Σ0 := Σ(0). Then the gap equation is cast into the form

Σ(x) =
g2

8π2

N2
c − 1

Nc

(

2x

∫ x0

x
Σ(y)dy −

∫ x0

x
yΣ(y)dy +

∫ x

0
yΣ(y)dy

)

. (B.2)

Note that we have Σ(x0) = −Σ(0). We can take the derivative with respect to x twice to get

Σ′′ = − g2

4π2

N2
c − 1

Nc
Σ , (B.3)

and the appropriate solution is

Σ(x) = Σ0 cos



x

√

g2

4π2

N2
c − 1

Nc



 , with x0 = π

√

4π2

g2

Nc

N2
c − 1

. (B.4)

From the definition of x0, we obtain

Σ0 = 2µ exp

[

−π
√

4π2

g2

Nc

N2
c − 1

]

. (B.5)
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